
Lifetime Data Anal (2016) 22:473–503
DOI 10.1007/s10985-015-9345-9

Nonparametric estimation of time-to-event distribution
based on recall data in observational studies

Sedigheh Mirzaei Salehabadi1 · Debasis Sengupta1

Received: 14 October 2014 / Accepted: 20 July 2015 / Published online: 21 September 2015
© Springer Science+Business Media New York 2015

Abstract In a cross-sectional observational study, time-to-event distribution can be
estimated from data on current status or from recalled data on the time of occurrence.
In either case, one can treat the data as having been interval censored, and use the
nonparametric maximum likelihood estimator proposed by Turnbull (J R Stat Soc Ser
B 38:290–295, 1976). However, the chance of recall may depend on the time span
between the occurrence of the event and the time of interview. In such a case, the
underlying censoring would be informative, rendering the Turnbull estimator inap-
propriate. In this article, we provide a nonparametric maximum likelihood estimator
of the distribution of interest, by using a model adapted to the special nature of the
data at hand. We also provide a computationally simple approximation of this estima-
tor, and establish the consistency of both the original and the approximate versions,
under mild conditions. Monte Carlo simulations indicate that the proposed estimators
have smaller bias than the Turnbull estimator based on incomplete recall data, smaller
variance than the Turnbull estimator based on current status data, and smaller mean
squared error than both of them. The method is applied to menarcheal data from a
recent Anthropometric study of adolescent and young adult females in Kolkata, India.
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1 Introduction

Observational data on time to occurrence of a landmark event occur in various fields
of biological and social sciences. Some examples of landmark events are onset of
menarche in adolescent and young adult females (Bergsten-Brucefors 1976; Chumlea
et al. 2003;Mirzaei et al. 2015), dental development (Demirjian et al. 1973; Eveleth and
Tanner 1990), breast development (Cameron 2002; Aksglaede et al. 2009), beginning
of criminal career (Hosmer and Lemeshow 1999), marriage and birth of the first child
(Allison 1982), end of a work career (LeClere 2005) and end of a strike (Hosmer
and Lemeshow 1999). The probability distribution of the time till occurrence of the
event is useful for comparing two populations, setting benchmarks for individuals,
setting policy objectives and so on. Estimation of that distribution is therefore an
important inferential issue. Ideally one would like to observe a number of individuals
continuously or periodically until the occurrence of the landmark event (Korn et al.
1997; McKay et al. 1998). However, researchers often opt for cross-sectional studies
in order to save time and cost.

Cross-sectional studies can produce dichotomous data on the current status of an
individual (whether or not the landmark event has occurred till the day of observation).
A binary data regression model such as probit or logistic model, with time as the
covariate, is often used for estimating the probability distribution function (Hediger
and Stine 1987; Ayatollahi et al. 2002). It is also possible to estimate the distribution
nonparametrically, by regarding the current status data as either left or right censored
observations. The nonparametric maximum likelihood estimator (NPMLE) proposed
by Turnbull (1976) for interval censored data has occasionally been used in this set-up
(Keiding et al. 1996).

In some cross-sectional studies, a subject is asked to recall the time of the landmark
event, in case it has already taken place. Such retrospective data can be incomplete.
In many cases (e.g., when the event has not happened or the subject cannot recall
when it had happened) one can specify only a range for the requisite time. Thus,
data arising from retrospective studies are also interval-censored. In this situation, it
is tempting to use the likelihood for interval censored data, leading to a parametric
MLE or the NPMLE obtained by Turnbull (1976). In fact, there are instances when
the Turnbull estimator has been used for studying the distribution of age at reaching
a developmental landmark (see, e.g., Aksglaede et al. 2009). However, the censoring
mechanism in this set-up is likely to depend on the time-to-event, thereby making the
censoring informative. This is because of the fact that memory generally fades with
time. As an example, for two subjects interviewed at the same age, the one with later
onset of menarche is more likely to remember the date. It may be recalled that the
Turnbull estimator is not meant for informatively censored data, and can have large
bias when the censoring is informative, as confirmed by simulations reported in this
paper.

We propose in Sect. 2 a new approach for estimating the time-to-event distribution
by using the recall information through an informative censoring model. Under this
model, the time of observation is assumed to be independent of the time-to-event,
and the recall probability is regarded as a function of the gap time between the event
and the observation. In Sect. 3, we check the identifiability of the distribution of
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interest. In Sect. 4, we derive the NPMLE under the model, establish its existence and
asymptotic uniqueness and provide a self-consistency algorithm for computing it. We
also provide a computationally simpler alternative that is asymptotically equivalent
to the NPMLE. In Sect. 5, we show that both the NPMLE and its approximation are
consistent estimators of the identifiable part of the underlying distribution. Results of
Monte Carlo simulations and an illustrative data analysis are reported in Sect. 6 and 7,
respectively. The data analysis is based on a study of menarcheal age of adolescent and
young adult females, undertaken by the Indian Statistical Institute, Kolkata, where the
landmark event is the onset of menarche. The conditions chosen for simulations are
also in line with this application. Some concluding remarks are provided in Sect. 8.
Proofs of all the results are given in the Appendix.

2 Model and likelihood

Consider a set of subjects having time of the occurrence of landmark event T1, . . . , Tn ,
which are samples from a common distribution F with density f and support
[tmin, tmax ]. Let these subjects be interviewed at times S1, . . . , Sn , respectively, cho-
sen from a finite set S. Let, for i = 1, . . . , n, δi be the indicator of Ti ≤ Si , i.e., the
event having had occurred on or before the time of interview.

In the case of current status data, one only observes (Si , δi ), (i = 1, 2, . . . , n). The
corresponding likelihood, conditional on the time of interview, is

n∏

i=1

[F(Si )]δi [F̄(Si )]1−δi , (1)

where F̄ = 1 − F .
In a retrospective study, the subject may remember the exact time of the event.

Let εi be the indicator of recalling that time. Thus, for the i th subject, it can be said
that Ti ∈ Ai , where the set Ai is defined as follows in three cases. For the sake of
simplicity, and in order to reduce the effect of recall error, we assume that whenever
a subject forgets the epoch, there is no reliable information on an approximate range
of time also.

Case (i). When δi = 0, i.e., the landmark event for the i th subject did not occur till
the time of interview, we have Ai = [Si ∨ tmin, tmax ].

Case (ii). When δi = 1 and εi = 1, i.e., the landmark event for the i th subject did
occur and the subject can exactly recall the date, we have Ai = {Ti }.

Case (iii). When δi = 1 and εi = 0, i.e., the landmark event for the i th subject
did occur and the subject cannot recall the exact date, we have Ai =
[tmin, tmax ∧ Si ]

Note that there can be a gray area between the choices of Ai in cases (ii) and (iii),
when the subject can recall an approximate date or a range of dates of the landmark
event. In view of the possibility of recall error, noted by several researchers (Rabe-
Hesketh et al. 2001; Beckett et al. 2001) we ignore such incomplete information and
treat these as cases of no recall.
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If the underlying censoring mechanism is presumed to be noninformative, then
the likelihood arising from the above retrospective data, conditional on the time of
interview, is

n∏

i=1

[
{F(Si )}1−εi { f (Ti )}εi

]δi [F̄(Si )]1−δi , (2)

However, it has been mentioned in Sect. 1 that the censoring mechanism is likely to
be informative. Specifically, the non-recall probability, P(εi = 0|δi = 1)may depend
on the time elapsed since the time of that event, Si − Ti . We model the conditional
probability of forgetting the date as an unspecified function of the elapsed time,

π(s − t) = P(εi = 0|Ti = t, Si = s), s > t. (3)

According to this model, the likelihood, conditional on the ages at interview, is

n∏

i=1

[(∫ Si

0
f (u)π(Si − u)du

)1−εi

{ f (Ti )(1 − π(Si − Ti ))}εi
]δi

[F̄(Si )]1−δi . (4)

Here, the informativeness of the censoringmechanism is captured through the function
π . When π is a constant, the likelihood (4) becomes a constant multiple of (2). As
a further special case, if π = 1, then the likelihood (4) reduces to (1). On the other
hand, when π = 0, i.e., the landmark event times are perfectly recalled, the product
likelihood (4) reduces to

n∏

i=1

[ f (Ti )]δi [F̄(Si )]1−δi , (5)

which is the likelihood for randomly right-censored data. These reductions follow
from the fact that the model (3) leading to the likelihood (4) is more general than the
usual censoring models. It may be noted that Mirzaei et al. (2015) has recently used
the likelihood (4) for the purpose of parametric estimation of F .

3 Identifiability of time-to-event distribution

Before embarking on developing a method of estimation, we need to visit the issue of
identifiability of the function of interest. Mirzaei et al. (2015) showed the likelihood
(4) can also be interpreted as a product of conditional densities of (Vi , δi ) given Si ,
for i = 1, 2, . . . , n, where Vi = (Si − Ti )εiδi . The density of Y = (S, V, δ) can be
written as follows.

h(s, v, δ) =

⎧
⎪⎪⎨

⎪⎪⎩

g(s)F̄(s) if v = 0 and δ = 0,
g(s)

∫ s
0 f (u)π(s − u)du if v = 0 and δ = 1,

g(s) f (s − v)(1 − π(v)) if v > 0 and δ = 1,
0 otherwise.

(6)
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Here, g is the density of G (distribution of observation times), f is the density of
the time-to-event (corresponding to the distribution function F) and π is the non-
recall probability expressed as a function of the time elapsed since the occurrence
of the event. Note that G can be a continuous, discrete or mixed distribution, and g
represents its Radon-Nikodym derivative with respect to an appropriate dominating
measure. The parameter of interest is the function F . We address the question as to
whether the functions F , π and G are identifiable from h, in the next theorem.

Theorem 1 (a) The distribution G is completely identifiable from h.
(b) If G has an absolutely continuous component over the support of F, then π and

F are identifiable from h.
(c) If G has probability mass only over the space of integers and the function π comes

froma familyP satisfying the condition: ‘π1, π2 ∈ P implies that (1−π2)/(1−π1)

is not periodic with period one’, then π and F are identifiable from h.

The following example shows that if the condition given in part (c) of the above
theorem does not hold, then f may not be identifiable from h.

Example 1 Let π1 be a periodic function with period one, defined over the interval
(0,1] by the equation π1(v) = v, and π2 = 0.5. Let f1(v) = 1/(tmax − tmin) for
v ∈ [tmin, tmax ], and f2 = f1 ((1 − π1)/(1 − π2)), defined over the same interval.
Let g be any probability mass function defined over the space of positive integers. It
may be verified that either of the triplets of functions (g, f1, π1) and (g, f2, π2), when
substituted in (6), produce the following h:

h(1, v, δ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(s)(1 − s
tmax−tmin

) if v = 0 and δ = 0,

g(s) 0.5s
tmax−tmin

if v = 0 and δ = 1,

g(s) 1−(v−[v])
tmax−tmin

if v > 0 and δ = 1,

0 otherwise.

We now proceed with the problem of estimation, after assuming that either of the
conditions given in part (b) and (c) of Theorem 1 are satisfied.

4 Nonparametric estimation

4.1 Reduction of the problem

It is known that nonparametric maximization of the likelihood (5) leads to the Kaplan-
Meier estimator (Kaplan and Meier 1958), while maximization of (2) or (1) produces
the Turnbull estimator (Turnbull 1976) or a special case of it. On the other hand,
the likelihood (4) is difficult to maximize because of the integral contained in the
expression. In order to simplify it, we assume that π is a piecewise constant function
of the form

π(x) = b1 I (x1 < x ≤ x2) + b2 I (x2 < x ≤ x3) + . . . + bk I (xk < x < ∞), (7)
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where 0 = x1 < x2 < · · · < xk ; 0 < b1, b2, . . . , bk ≤ 1. Note that it is possible to
constrain the parameters b1, b2, . . . , bk to be in increasing order, so that π is a non-
decreasing function. Such a choice correspond to the general perception that memory
fades with time. However, we do not use this constraint in this paper.

When (7), the likelihood (4) reduces to

L =∏n
i=1

[{ k∑

l=1

bl
(
F(Wl(Si )) − F(Wl+1(Si ))

)
}1−εi

{
f (Ti )

(
1 −

k∑

l=1

bl I
(
Wl+1(Si ) < Ti ≤ Wl(Si )

)
)}εi ]δi

[F̄(Si )]1−δi .

(8)
where Wl(Si ) = (Si − xl) ∨ tmin for l = 1, . . . , k and Wk+1(Si ) = tmin, i =
1, 2, . . . , n. Note that

Wk+1(Si ) ≤ Wk(Si ) ≤ Wk−1(Si ) ≤ · · · ≤ W1(Si ) ≤ tmax , (9)

Depending on the value of Si , some of the above inequalities may in fact be equalities.
Specifically, if l is an index such that Si − xl+1 ≤ tmin < Si − xl , then tmin =
Wk+1(Si ) = · · · = Wl+1(Si ). Further, if l is an index such that Si − xl+1 < tmax ≤
Si −xl , then we haveWl(Si ) = · · · = W1(Si ) = tmax . The remaining equalities would
be strict.

Anticipating point masses at Ti whenever δiεi = 1, the likelihood (8) can be
rewritten as

L =
n∏

i=1

⎡

⎢⎣

⎧
⎪⎨

⎪⎩

k∑

l=1

bl

∫

Ail

f (u)du

⎫
⎪⎬

⎪⎭

1−εi{
f (Ti )

(
1 −

k∑

l=1

bl I
(
Ti ∈ Ail

)
)}εi

⎤

⎥⎦

δi

[F̄(Si )]1−δi ,

(10)

where Ail = (Wl+1(Si ),Wl(Si )] for 1 ≤ l < k and Ail = [tmin,Wl(Si )] for l = k+1.
Note from (9) that some of the Ail ’s can be empty. The simple form of the above
likelihood,which can also bewrittenwithout any integral, paves theway for estimation.

Assuming that k and x1, x2, . . . , xk are known (while b1, b2, . . . , bk are unknown),
we attempt to narrow down the domain over which the likelihood needs to be max-
imized. Recall from Sect. 2 that for retrospective data with possible non-recall, the
actual time of the landmark event of the i th subject can be said to belong to a set Ai . In
case (i), Ai is an interval. In case (ii), it is a singleton set. In case (iii), it may be written
as a union of the disjoint intervals used in the likelihood (10), i.e., Ai =⋃k

l=1 Ail . In
summary, if we regard a singleton set as a special case of an interval, then each of the
sets Ai , i = 1, . . . , n, can be said to be constituted of a union of one or more intervals.

Consider the collection of all these intervals. Let {B1, . . . , BM } be the set of all
unique members of this collection, disregarding replications. Following Turnbull
(1976), we look for intersections of these intervals. Denote the non-empty subsets
of the index set {1, 2, . . . , M} by s1, s2, . . . , s2M−1. Define
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Ir =
⎧
⎨

⎩
⋂

i∈sr
Bi

⎫
⎬

⎭
⋂
⎧
⎨

⎩
⋂

i /∈sr
Bc
i

⎫
⎬

⎭ for r = 1, 2, . . . , 2M − 1.

Some of the Ir ’s may be empty sets, denoted here by φ. Let

C =
{
sr : Ir �= φ, 1 ≤ r ≤ 2M − 1

}
. (11)

It can be verified that all the Ir ’s are distinct and disjoint. LetA be the set of intervals
Ir such that sr ∈ C. Let pr = P(Ir ), for all Ir ∈ A. By using the definition of Ir ,
we can rewrite the contribution of individual i to the likelihood in the three cases of
censoring as follows.

Case (i): Let δi = 0. If li is the index such that Bli = Ai , then

P(Ai ) = P(Bli ) =
∑

r :li∈sr
sr∈C

pr .

Case (ii): Let δiεi = 1. If li is the index such that Ili = Ai then P(Ai ) = pli .
Case (iii): Let δi (1 − εi ) = 1. If li1, li2, . . . , lik are indices such that Blit = Ait for

1 ≤ t ≤ k, then

P(Ait ) = P(Blit ) =
∑

r :li t∈sr
sr∈C

pr .

When the likelihood (10) is written in terms of the pr ’s, it reduces to

L =
n∏

i=1

⎡

⎢⎢⎣

⎧
⎪⎪⎨

⎪⎪⎩

k∑

t=1

bt

⎛

⎜⎜⎝
∑

r :li t∈sr
sr∈C

pr

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭

1−εi {
pr

∣∣∣∣
Ir=Ai

(
1 −

k∑

t=1

bt I
(
Ti ∈ Ait )

)}εi

⎤

⎥⎥⎦

δi

⎡

⎢⎢⎣
∑

r :li∈sr
sr∈C

pr

⎤

⎥⎥⎦

1−δi

, (12)

Thus, maximizing the likelihood (10) is equivalent to maximizing the likelihood (12)
with respect to pr for sr ∈ C.

There is a partial order among the members of C in the sense that some sets are
contained in others. Let

C0 = {s j : s j ∈ C; s j ⊂ s j ′ does not hold for any s j ′ ∈ C} . (13)
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Thus, C0 is a sub-class of C that retains only those sets that are not proper subsets of
any other set. Our next result shows that the maximization of the likelihood can be
restricted to this smaller class.

Theorem 2 Maximizing the likelihood (12)with respect to pr for sr ∈ C is equivalent
to maximizing it with respect to pr for sr ∈ C0, i.e.,

max
pr :pr∈[0,1],∑sr∈C pr=1

L = max
pr :pr∈[0,1],∑sr∈C0 pr=1

L .

It follows from the above theorem that the likelihood has the same maximum value
whether sr is chosen from the class C or C0. Therefore, we can replace C by C0 in (12).

Let A0 be the set of distinct intervals I j such that s j ∈ C0. In order to simplify the
notation, let A0 = {J1, J2, . . . , Jm} and q j = P(J j ). Let p = (q1, q2, . . . , qm)T and
b = (b1, . . . , bk)T . Theorem 2 implies that the problem of maximizing (12) reduces
to maximizing

L(p, b) = L(q1, . . . , qm, b1, . . . , bk)

=
n∏

i=1

⎡

⎢⎣

⎧
⎨

⎩

k∑

t=1

bt

⎛

⎝
∑

j :J j⊂Ait

q j

⎞

⎠

⎫
⎬

⎭

1−εi
⎧
⎨

⎩
∑

j :J j=Ai

q j

(
1−

k∑

t=1

bt I
(
Ti ∈ Ait )

)⎫⎬

⎭

εi
⎤

⎥⎦

δi

⎡

⎣
∑

j :J j⊂Ai

q j

⎤

⎦
1−δi

=
n∏

i=1

[ m∑

j=1

βi j q j

]
, (14)

subject to
∑m

j=1 q j = 1, 0 ≤ q1, . . . , qm ≤ 1, and 0 ≤ b1 ≤ · · · bk ≤ 1, where

βi j =
⎧
⎨

⎩

I
(
J j ⊆ Ai

)
if δi = 0,

1 −∑k
t=1 bt I

(
Ti ∈ Ait

)
I
(
J j ⊆ Ai

)
if δiεi = 1,∑k

t=1 bt I
(
J j ⊆ Ait ) if δi (1 − εi ) = 1,

(15)

for i = 1, . . . , n, and j = 1, . . . ,m.
The task of identifying a maximum of the above likelihood is simplified through

the following result, which is interesting by its own right.

Theorem 3 LetA1 be the collection of singleton sets consisting of the exactly recalled
times of events. Then A1 ⊆ A0. Further, if G is a discrete distribution with finite
support, then the probability of A0 being equal to A1 goes to one, as n → ∞.

Let I2 be set of indices i (between 1 and n) that satisfy the conditions δiεi = 1
with cardinality n2. We are now ready for the next result regarding the existence and
uniqueness of the NPMLE.
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Theorem 4 The likelihood (14) has amaximum. Further, if G is a discrete distribution
with finite support, then the probability that (14) has a unique maximum goes to one,
as n2 → ∞.

4.2 A self-consistency algorithm

Following thework of Efron (1967) on computing theKaplan-Meier estimator (Kaplan
and Meier 1958) through a self consistency algorithm and similar work by Turnbull
(1976) in the case of interval censored data, we seek to obtain an estimator of p for
fixed b, based on the self consistency approach.

For i = 1, 2, . . . , n, let

Li j =
{
1 if Ti ∈ J j ,
0 otherwise,

When δiεi = 1, the value of Li j is known. Otherwise, its expectation with respect to
the probability vector p is given by

E(Li j ) = βi j q j
m∑
j=1

βi j q j

= μi j (p), say. (16)

Thus,μi j (p) represents the probability that the i-th observation lies in J j . The average
of these probabilities across the n individuals,

1

n

n∑

i=1

μi j (p) = π j (p), say, (17)

should indicate the probability of the interval J j . Thus, it is reasonable to expect that
the vector p would satisfy the equation

q j = π j (p) for 1 ≤ j ≤ m. (18)

An estimator of pmay be called self consistent if it satisfies the simultaneous equations
(18).

The form of the above equations suggests the following iterative procedure.

Step I. Obtain a set of initial estimates q0j (1 ≤ j ≤ m).
Step II. At the nth stage of iteration, use current estimate, pn , to evaluate μi j (pn)
for i = 1, 2, . . . , n, j = 1, 2, . . . ,m and π j (pn) for j = 1, 2, . . . ,m from (16)
and (17), respectively.
Step III. Obtain improved estimates pn+1 by setting qn+1

j = π j (pn).

Step IV. Return to Step II with pn+1 replacing pn .
Step V. Iterate; stop when the required accuracy has been achieved.
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The following theorem shows that equation (18) defining a self consistent estimator
must be satisfied by an NPML estimator of p.

Theorem 5 An NPML estimator of p must be self consistent.

The above theorem may be proved by using a standard argument used in (Sun 2006,
Sect. 3.4.1) for proving a similar result. For details, the reader is referred to Mirzaei
and Sengupta (2013).

Let p̂ = (q̂1, . . . , q̂m) and b̂ = (b̂1, . . . , b̂k) denote values of p and b, respectively,
for which L(p, b) attains its maximum over the set

� =
⎧
⎨

⎩(p, b)|
m∑

j=1

q j = 1, 0 ≤ q1, . . . , qm ≤ 1, 0 ≤ b1 ≤ · · · ≤ bk ≤ 1

⎫
⎬

⎭ .

Then a maximum likelihood estimate F̂n of F is given by

F̂n(t) =
∑

j :J j⊆[0,t]
q̂ j . (19)

In the sequel, we refer to this estimator as an NPMLE of F .

4.3 A computationally simpler estimator

The computational complexity of the NPMLE depends on the number of segments
(k) used in the piecewise constant formulation of the function π . It follows from
equations (11) and (13) that the cardinality of the class C can increase exponentially
with k, though the cardinality of the sub-class C0 is smaller. One can conceive of a
computational simplification on the basis of Theorem 3. According to this theorem,
theNPMLE hasmass only at points of exact recall of the event, when n is large. In such
a case, the likelihood (14) involves J j ’s that are singletons only. Hence, the crucial
task of identifying the appropriate J j ’s becomes redundant. Therefore, irrespective of
the value of n, one can maximize (14) with respect to point masses restricted to the
time points of exact recall of the event. This method would produce a computationally
simpler estimate that is equivalent to the unique NPMLE for large n.

Formally, let t1, . . . , tp be the ordered set of distinct ages at event that have been
perfectly recalled, and q∗

1 , . . . , q∗
p be the probability masses allocated to them. The

likelihood (14), subject to the constraint that q j = 0 whenever J j /∈ A1, is equivalent
to the unconstrained maximization of

L(q∗
1 , . . . , q∗

p, b) =
n∏

i=1

⎡

⎣
p∑

j=0

αi j q
∗
j

⎤

⎦ , (20)
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where

αi j =
⎧
⎨

⎩

1 if t j ∈ Ai , δi = 0,
1 −∑k

t=1 bt I
(
Ti ∈ Ait

)
if t j ∈ Ai , δiεi = 1,∑k

t=1 bt I (t j ∈ Ait ) if δi (1 − εi ) = 1,
(21)

with respect to the parameters (q∗
1 , . . . , q∗

p) and b, over the set

�∗ =
⎧
⎨

⎩(q∗
1 , . . . , q∗

p, b)|
p∑

j=1

q∗
j =1, 0 ≤ q∗

1 , . . . , q∗
p ≤1, 0 ≤ b1 ≤ · · · ≤ bk ≤1

⎫
⎬

⎭.

Let the likelihood (20) bemaximized at (q̂∗
1 , . . . , q̂∗

p, b̂
∗
).We define an approximate

NPMLE (AMLE) of F as

F̃n(t) =
∑

j :t j≤t

q̂∗
j . (22)

4.4 Estimation of variance

The variance of the NPMLE and the AMLE may be estimated through bootstrap
resampling. Sen et al. (2010) have argued that the usual bootstrap is not be guaranteed
to be consistent. The variances of (19) and (22) may be estimated through m out of
n bootstrapping of Bickel et al. (1997) with selection of m as in Bickel and Sakov
(2008), so that consistency is ensured.

5 Consistency of the estimators

Consider the set-up of Sect. 2 and the estimator F̃n . Let Θ be the set of all distribution
functions over the support [tmin, tmax ], i.e.,

Θ =
{
F : [tmin, tmax ] → [0, 1]; F rightcontinuous, nondecreasing;

F(tmin) = 0; F(tmax ) = 1
}
,

and Θ be the set of all sub-distribution functions, i.e.,

Θ =
{
F : [tmin, tmax ] → [0, 1]; F rightcontinuous, nondecreasing;

F(tmin) = 0; F(tmax ) ≤ 1
}
.

Note that, with respect to the topology of vague convergence, Θ is compact by
Helley’s selection theorem. Further, let F0 denote the true distribution of the time of
occurrence of landmark events, and F0(tmin) = 0. Let the interview times assume
values over set S.

For any given distribution F ∈ Θ having masses restricted to the set {t1, . . . , tp},
the log of the likelihood (20) can be written as
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(F) =
n∑

i=1

ln

⎡

⎣
p∑

j=1

αi j
{
F(t j ) − F(t j−)

}
⎤

⎦ . (23)

Define the set
E = {F : F ∈ Θ, E[
(F) − 
(F0)] = 0}, (24)

which is an equivalence class of the true distribution F0.
Strong consistency of the AMLE is established by the following theorem.

Theorem 6 In the above set-up, the AMLE {F̃n} converges almost surely to the equiv-
alence class E of the true distribution F0, in the topology of vague convergence.

The following theorem establishes consistency of the NPMLE.

Theorem 7 In the set-up described before Theorem 6, the NPMLE {F̂n} converges in
probability to the equivalence class E of the true distribution F0, in terms of the Lévy
distance.

The last theorem of this section ensures that under some conditions the equivalence
class used in Theorems 6 and 7 includes only F0.

Theorem 8 If either the condition given in part (b) of Theorem 1 or the pair of
conditions given in part (c) holds, then the equivalence class defined in (24) is the
singleton class {F0}.

6 Simulations

For the purpose of simulation, we generate sample times to landmark event from the
Weibull distributionwith shape and scale parametersα = 11 andβ = 13, respectively,
and truncate the generated samples to the interval [8,16]. This truncated distribution
has median of 11.57. The corresponding ‘time of interview’ is generated from the
discrete uniform distribution over {7, 8, . . . , 21}. These choices are in line with the
data analytic example of the next section, where the time to landmark event is the age
at menarche in years. As for the non-recall probability, we use (7) with k = 8, intervals
of equal length and three sets of values of the parameters described in Table 1.

Case (a) corresponds to rapid and extensive forgetting with the passage of time,
whileCase (b) represents better retention. The choice of constantπ function inCase (c)
makes the censoring non-informative. Case (a) should favour the proposed methods,
as the chosen function π induces informative censoring. Case (c) is ideal for the Turn-
bull estimator based on censored duration data, as the censoring is non-informative,
while the proposed estimators are burdened with unnecessary nuisance parameters.
Case (b) may not favour any method decisively, as the non-recall probability, though
informative, is relatively small and consequently the informativeness of the censoring
is mild. The proposed methods, on the other hand, have the handicap of nuisance
parameters.

The NPMLE and AMLE of F are implemented by assuming that k, x1, x2, . . ., xk
in (7) are known, while b1, b2, . . . , bk are estimated. The NPMLE and the AMLE
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Table 1 Values of b1, . . . , b8 in three simulation models and resulting proportion of data with different
types of incompleteness

Simulation model Case (a) Case (b) Case (c)

Value of b1 and b2 0.1 0.05 0.40

Value of b3 0.40 0.15 0.40

Value of b4, . . . , b8 0.95 0.35 0.40

Percentage of cases with δi = 0 39% 39% 39%

Percentage of cases with δi εi = 1 36% 51% 27%

Percentage of cases with δi (1 − εi ) = 1 25% 10% 34%

are obtained by maximizing the likelihoods (14) and (20), respectively. Recursive
maximization is carried out alternately with respect to the probability parameters and
b. Since k is chosen as 8, there are eight different bt ’s (nuisance parameters) to be
estimated along with NPMLE and AMLE, even though many of the bt ’s have equal
values.

We compare the performances of the NPMLE (19) and the AMLE (22) with the
two MLEs based on (1) and (2), described here as the Turnbull estimator (status) and
the Turnbull estimator (duration), respectively. As a benchmark, we also evaluate the
performance of the empirical distribution function (EDF), a hypothetical estimator
computed from the underlying complete data. The results reported here are based on
500 simulation runs for sample sizes n = 100, 300 and 1000. The simulations for the
three cases are run parallely. For each run, the complete data as well as the observation
times for the three cases are the same, while the events of forgetting are simulated
subsequently according to the chosen non-recall probability.

The Turnbull estimator (status) is uniquely defined only at integer ages. Therefore,
in all the plots, we represent it through a set of unconnected points at integer ages.

Figure 1 shows plots of the bias, the variance and the mean square error (MSE) of
the five estimators for different ages, for n = 100 and parameters of the non-recall
probability function (7) chosen as in Case (a). The NPMLE is found to have smaller
bias than the Turnbull estimator (duration), and smaller variance than the Turnbull
estimator (status), and smaller MSE than both the Turnbull estimators. The bias of the
AMLE is only marginally worse than that of NPMLE, and the MSE is comparable.

Figure 2 shows these plots for n = 100 and parameters of the non-recall probability
function (7) chosen as in Case (b). Even though the bias of the estimators reduce, the
overall pattern of performances remains the same. The Turnbull estimator (duration)
appears to have smaller bias when forgetting is less prevalent. The performance of the
AMLE is almost identical to that of NPMLE. The similarity of performances of the
Turnbull estimator (duration), the NPMLE and the AMLE may be explained by the
fact that the nature of treatment of the cases with forgotten dates of events matters
less when there is less forgetting. The EDF and the Turnbull estimator (status) have
exactly the same performance as depicted in Fig. 1, since the data required for these
estimators remain unchanged.

Figure 3 shows these plots for n = 100 and parameters of the non-recall probability
function (7) chosen as in Case (c). The performances of the EDF and the Turnbull
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Fig. 1 Comparison of bias, variance and MSE of the four estimator in case (a) and n = 100
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Fig. 2 Comparison of bias, variance and MSE of the four estimator in case (b) and n = 100

estimator (status) continue to be as seen in Figs. 1 and 2. The Turnbull estimator
(duration), the NPMLE and the AMLE have similar patterns of bias, variance and
MSE. This is noteworthy, as the constancy of the non-recall probability works in
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Fig. 3 Comparison of bias, variance and MSE of the four estimator in case (c) and n = 100

favour of the Turnbull estimator (duration), which does not involve estimation of the
nuisance parameters b1, . . . , b8.

In all the cases, the performances of the Turnbull estimator (duration), the NPMLE
and the AMLE are noticeably worse than that of the EDF. This is because of the
substantial number of right censored observations (with δi = 0), as seen from Table 1.
The superior performance of the NPMLE and the AMLE in comparison with the
Turnbull (status) shows how usefully recall data can be utilized.

Figures 4, 5 and 6 show plots similar to Figs. 1, 2 and 3 for n = 300. There is a
marked reduction in the bias and variance of the NPMLE, the AMLE and the Turnbull
estimator (status). The previously observed pattern of relative performances continues
to prevail. The bias of the Turnbull estimator (duration) observed in Fig. 6 is smaller in
comparison with the same case with n = 100 (Fig. 3). This is expected, as the interval
censoring associated with forgetting the date of event is chosen to be non-informative
in this case. There is no such reduction in Figs. 4 and 5 though. The patterns of bias
of the Turnbull (duration) estimator observed in these two figures are of the same
order as observed in Figs. 1 and 2 respectively. This occurrence underscores the cost
of inadequate handling of the cases of non-recall.

Simulations for n = 1, 000 in Cases (a), (b) and (c), leading to Figs. 7, 8 and 9,
show that the bias and the variance of the Turnbull estimator (status), the NPMLE
and the AMLE continue to reduce with sample size. The same can be said about the
Turnbull estimator (duration) in Case (c), as observed from Fig. 9. In contrast, the bias
of the Turnbull estimator (duration) appears to have settled at a value away from 0, in
Cases (a) and (b), as observed in Figs. 7 and 8.
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Fig. 4 Comparison of bias, variance and MSE of the four estimator in case (a) and n = 300
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Fig. 5 Comparison of bias, variance and MSE of the four estimator in case (b) and n = 300
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Fig. 6 Comparison of bias, variance and MSE of the four estimator in case (c) and n = 300
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Fig. 7 Comparison of bias, variance and MSE of the four estimator in case (a) and n = 1000
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Fig. 8 Comparison of bias, variance and MSE of the four estimator in case (b) and n = 1000
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Fig. 9 Comparison of bias, variance and MSE of the four estimator in case (c) and n = 1000
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Fig. 10 I Average of bootstrap variance estimator and II Sample variance of the four estimators of F

8 10 12 14 16

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

(I)

age (year)

A
v
e
ra

g
e
 o

f 
b
o
o
ts

tr
a
p
 v

a
ri

a
n
c
e
 e

s
ti
m

a
to

r

NPMLE and AMLE
Turnbull estimate (Duration)
Turnbull estimate (Status)

8 10 12 14 16

0
.0

0
0

0
.0

0
2

0
.0

0
4

(II)

age (year) 

S
E

 o
f 
b
o
o
ts

tr
a
p
 v

a
ri

a
n
c
e
 e

s
ti
m

a
to

r

NPMLE and AMLE
Turnbull estimate (Duration)
Turnbull estimate (Status)

Fig. 11 I Average and II Standard error of bootstrap variance estimator using four methods

On the basis of the above findings, the AMLE may be regarded as a reasonable
substitute for the NPMLE.

We now turn to the performance of the bootstrap estimator of variance. For this
study, we choose n = 1, 000 and the parameters of the non-recall probability function
as in Case (b). We choose the m out of n bootstrap of Bickel et al. (1997), with
m = n0.8 (see Bickel and Sakov 2008). Figure 10 shows the plots of the average
(across 500 runs) of the bootstrap estimate of variance of the NPMLE and the AMLE
shown in panel (I) and the sample variance (across 500 runs) of the two estimators
in panel (II). The corresponding plots for the other estimators are also shown. The
two sets of the plots show comparable patterns, and mild overestimation of variance
on the average. Figure 11 shows the standard error (across 500 runs) of the bootstrap
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estimator of variance, alongside the average (across 500 runs) of the same. It is seen
that the standard error is generally much smaller than the average. Thus, the bootstrap
estimator of variance appears to be a reasonable one.

Plots for other sample sizes and other values of parameters, which show similar
patterns, are omitted for the sake of brevity.

7 Data analysis

In a recent anthropometric study conducted by the Biological Anthropology Unit of
the Indian Statistical Institute in and around the city of Kolkata, India from 2005 to
2011 (ISI 2012, p. 108), a total of 2195 randomly selected individuals, aged between
7 and 21 years, were surveyed. The subjects were interviewed on or around their
birthdays. The data set contains age, menarcheal status, age at menarche (if recalled),
and some other information.

For this data set, the landmark event is the onset of menarche. Among 2195 sam-
ples, 775 individuals did not have menarche, 443 individuals had menarche and recall
the date of its onset and 977 individuals had menarche but could not recall the date.
We modeled the non-recall probability π , over the interval 0 to 13 years (maximum
possible separation between menarcheal age and age at observation in the sample).
We used a piecewise constant model, with k = 8 and a uniform grid. Figure 12 shows
the NPMLE, the AMLE, the Turnbull estimator (duration) and the Turbull estimator
(Status) of the distribution function of the age at menarche. It can be seen that the
NPMLE and the AMLE are indistinguishable. The NPMLE, the AMLE and the Turn-
bull (status) estimator are closer to one another as compared to the Turnbull (duration)
estimator, which is expected to be biased. Since the Turnbull estimator (status) is not
uniquely defined at non-integer ages, the NPMLE or the AMLE may be preferred.

In order to get an idea about the estimation error, we estimate the variances of the
NPMLE, the AMLE and the two Turnbull estimators through bootstrap resampling.
As in the previous section, we use m out of n bootstrap of Bickel et al. (1997), with
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Fig. 12 Estimated distribution function of data using three methods
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Fig. 13 Variance of estimated distribution function of data using three methods
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Fig. 14 Estimated distribution function with different k

m = n0.8, i.e., m = 472, and 500 replications. Plots of the bootstrap estimators of
variance of the three estimators, shown in Figure 13, reveal that the Turnbull estimator
(status) has a much larger variance compared to the NPMLE and the AMLE. Thus,
the NPMLE and the AMLE may be preferred. The computational simplicity of the
AMLE makes it more attractive than the NPMLE.

The chosen value of k for estimation was obtained after considering a coarser and
a finer partition for the piecewise constant model of π . Specifically, the range 0 to 13
years was split experimentally into k equal intervals, with k = 4, 8 and 16, and the
resulting estimated distribution functions were compared. Figure 14 shows plots of the
estimated distribution function for different values of k. It is seen that by increasing k
from 4 to 8, one observes a substantial change in the estimated distribution function,
though the change is much less when k is increased from 8 to 16. The integrated
mean square difference between the distribution functions (scaled by the integral of
the square of the function for the lower value of k) is 0.85 when one compares k = 4
with k = 8. The same criterion produces the value 0.019 when the comparison is
between the curves for k = 8 and k = 16. We have chosen k = 8, as the alternative
choice k = 16 does not produce a substantially different estimate of the distribution
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function. Figure 15 shows the estimated function π for different values of k. Once
again, the estimates of π for k = 8 and k = 16 differ much less than those for k = 4
and k = 8. This observation justifies the choice k = 8.

8 Concluding remarks

In this paper, we have offered a realistic model and method for estimating the time-
to-event distribution based on recall data, in the presence of informative censoring.
Modelingof the incompleteness in the data is a critical issue. There canbe an alternative
approach formodeling this kind of incomplete data, through an underlying distribution
(F) for the time till the occurrence of the event of interest, and another distribution
(say, G) for the time from that occurrence to the forgetting of the date. The latter may
in fact be a sub-distribution function, with some mass at infinity. In this formulation
also, there would be three cases for individual i : neither event has occurred till the
age at interview (δi = 0), only the first event has occurred (δiεi = 1) and both events
have occurred (δi (1 − εi ) = 1). The contribution of individual i to the likelihood in
the three cases are as follows.

Case (i): When δi = 0, the contribution of the individual in likelihood is F̄(Si ).
Case (ii): When δiεi = 1, the contribution of the individual in likelihood is

f (Ti )Ḡ(Si − Ti ).
Case (iii): When δi (1 − εi ) = 1, the contribution of the individual in likelihood is∫ Si

0 f (u)G(Si − u)du.

It can be seen that these contributions also lead to the likelihood (4), with G replacing
π . In fact, the above formulation provides an interpretation of the ‘forgetting function’
π as the distribution function of the time to the forgetting event,measured from the date
of occurrence of the main event. This interpretation holds when π is non-decreasing,
while the general formulation of Section 2 remains applicable even when π does not
have this property.

The approach of modeling non-recall through a forgetting function may be adapted
to the estimation of the distribution of the time from contracting HIV infection through
blood transfusion to the onset of AIDS (Kalbfleisch and Lawless 1989). Here, the
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subjects listed in a central registry have a known date of onset of AIDS, but the date
of transfusion is sometimes difficult to ascertain retrospectively. However, a range or
set of dates may be available. If one ignores the issue of truncation, as in Kalbfleisch
and Lawless (1989), then the non-recalled cases may perhaps be handled in a better
way. Instead of ignoring these cases altogether, one may incorporate this censored
information through modeling of recall uncertainty following the approach used in
the paper. Incorporation of truncation would lead to a more complicated likelihood,
and a different computational algorithm may have to be explored.
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Appendix

Proof of Theorem 1

(a) We have, from (6) (with v > 0 and δ = 1),

h(s, v, 1) = g(s) f (s − v)(1 − πη(v)),

that is,

1 − πη(v) = h(s, v, 1)

g(s) f (s − v)
∀s, v s.t. v < s. (25)

By substituting the above expression in (6) for v = 0 and δ = 1 and simplifying
the equation, we have

F(s) = h(s, 0, 1) + ∫ s0 h(s, s − u, 1)du

g(s)
. (26)

By substituting the above expression of F(s) in (6) for v = 0 and δ = 0, we have
g(s) as

g(s) = h(s, 0, 0) + h(s, 0, 1) +
∫ s

0
h(s, s − u, 1)du. (27)
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The above identity holds over the support of G irrespective of whether G is a
discrete, a continuous or a mixed distribution. The identifiability of G follows.

(b) By substituting (27) in (26), we have

F(s) = h(s, 0, 1) + ∫ s0 h(s, s − u, 1)du

h(s, 0, 0) + h(s, 0, 1) + ∫ s0 h(s, s − u, 1)du
. (28)

IfG has an absolutely continuous component over the support of F , then for every
s and all real valued v < s, we have from (25),

πη(v) = 1 − h(s, v, 1)

g(s) f (s − v)
. (29)

Thus, (29) together with (27) and (28) identify F and πη completely.
(c) For the sake of contradiction, let us assume there are two pairs of choices of f

and πη, say ( f1, π1) and ( f2, π2), such that their substitution in the right hand
side of (6) produces the same function. If we follow the steps leading to (25) for
these two pairs of functions, then we have, for all integers s and all v < s,

f1(s − v)(1 − π1(v)) = f2(s − v)(1 − π2(v)).

Hence,
f1(v)

f2(v)
= 1 − π2(s − v)

1 − π1(s − v)
∀s, v s.t. v < s. (30)

Since the above identity holds for all integers s, we can write

1 − π2(s − v)

1 − π1(s − v)
= 1 − π2(1 − v)

1 − π1(1 − v)
for all integer s and all v < s. (31)

The above equation implies that the function (1 − π1)/(1 − π2) is periodic over
the relevant domain with period 1, which contradicts the assumption. Therefore,
the pair ( f, πη) is uniquely defined for any given h.

Proof of Theorem 2

By definition of C and C0 we can rewrite the likelihood (12) as follows.

L =
n∏

i=1

⎡

⎢⎢⎣

⎧
⎪⎪⎨

⎪⎪⎩

k∑

t=1

bt

⎛

⎜⎜⎝
∑

r :li t∈sr
sr∈C0

pr +
∑

r :li t∈sr
sr∈C\C0

pr

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭

1−εi {
pli

(
1 −

k∑

t=1

bt I
(
Ti ∈ Ait )

)}εi

⎤

⎥⎥⎦

δi

⎡

⎢⎢⎣
∑

r :li∈sr
sr∈C0

pr +
∑

r :li∈sr
sr∈C\C0

pr

⎤

⎥⎥⎦

1−δi

. (32)
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For any sr ∈ C\C0, let Ar = {Ir ′ : sr ′ ∈ C0, sr ⊂ sr ′ }. By construction of C0, Ar is a
non-empty set. The elements of Ar are disjoint sets consisting of unions of intervals,
which are subsets of [tmin, tmax ]. Let Ir∗ be that member of Ar which satisfies the
condition ‘there is α ∈ Ir∗ such that α < β whenever β ∈ Ir† for any Ir† ∈ Ar ’. We
shall show that by shifting mass from any Ir to Ir∗ , there will be no reduction in the
contribution of any individual to the likelihood (32).

We can check the effect of shifting mass on contribution of different individuals
(i = 1, . . . , n) to the likelihood.

Case (i). Let δi = 0. If li ∈ sr or li /∈ sr∗ , then there is no change in the likelihood.
If li ∈ sr∗\sr , then the factor contributed by individual i to the likelihood
increases by pr .

Case (ii). Let δiεi = 1. If li /∈ sr∗ , then there is no change in the likelihood. If
li ∈ sr∗\sr , then the factor contributed by individual i to the likelihood
increases by pr . The case li ∈ sr cannot occur, because Ir and Ir∗ are
distinct and disjoint.

Case (iii). Let δi (1− εi ) = 1. There exists at most one t such that li t ∈ sr . If there is
such a t , then there is no change in the likelihood. If there exists no t such
that li t ∈ sr∗ , then there is no change in the likelihood also. In case there
is a t such that li t ∈ sr∗\sr , the factor contributed by individual i to the
likelihood increases by pr .

It follows that maximizing L can be restricted to {pr : sr ∈ C0}.

Proof of Theorem 3

It is easy to see, from the construction of A0, that every singleton set consisting of
a perfectly recalled time-to-event is a nominal interval with zero width, belonging to
A0. Therefore A1 ⊆ A0.

DefineS1,S2,S3 as index sets of individuals in the three different cases of censoring.
The interview times are discrete valued with finite domain; x1, x2, . . . , xk are also
finite. Therefore, even when n is large, there is at most a finite number (say N ) of
distinct sets of the form

As = {
⋂

i∈s
Bi
}⋂{ ⋂

i∈S1∪S3\s
Bc
i

}
,

where s ⊆ S1 ∪S3. Denote s(1), s(1), . . . , s(N ), the index sets corresponding to the N
distinct sets described above.

Consider amember ofA0, say Is , where s is a subset of {1, 2, . . . , n}. If s ⊆ S2, then
it is already a singleton. If not, it can be written as s( j) ∪ (s\s( j)), with s( j) ⊆ S1 ∪S3
and s\s( j) ⊆ S2 for some j ∈ {1, 2, . . . , N }. Let us consider three further special
cases.

Case (a). Let s = s( j) ∪ {r} for r ∈ S2. In this case, Is is either a singleton or a null
set. If it is a null set, then it cannot be a member of A, and hence of A0.
Thus, Case (a) contributes only singletons to A0.
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Case (b). Let s = s( j) ∪ {r1, r2, . . . , rp}, for r1, r2, . . . , rp ∈ S2 when p > 1. In
this case, Is is either a singleton or a null set. Since the absolute continuity
of the time-to-event distribution almost surely precludes coincidence of
two sample values (say, Tr1 and Tr2 ), Is is a null set with probability 1. In
summary, Case (b) cannot contribute anything other than a singleton toA0.

Case (c). Let s = s( j). The probability that a specific individual (say, the i-th one)
has the landmark event at an age contained in As( j) is

P(Ti ∈ As( j) , δiεi = 1).

Since this quantity is strictly positive, the probability that none of the n
individuals have had the landmark event in As( j) and recalled the date is

(
1 − P(Ti ∈ As( j) , δiεi = 1)

)n
,

which goes to zero as n → ∞. Thus, the probability that there is i ∈ S2 such
that Ti ∈ As( j) goes to one as n → ∞. Therefore, Is( j)∪{i} = Is( j) ∩ {Ti } is
non-null. It follows that P[Is /∈ A0] goes to one.

The statement of the theorem follows by combining the three cases.

Proof of Theorem 4

From (14), the log-likelihood is given by


(p, b) =
n∑

i=1

⎛

⎝ln
( m∑

j=1

βi j q j

)⎞

⎠ (33)

Consider maximization of 
(p, b) periodically with respect to p and b. Given
(p(n), b(n)), the iterate at the nth stage, define the next iterate (p(n+1), b(n+1)) by

b(n+1) =
⎧
⎨

⎩
b(n) if n is even,
argmax
b ∈ S2


(p(n), b) if n is odd,

p(n+1) =
⎧
⎨

⎩

p(n) if n is odd,
argmax
p ∈ S1


(p, b(n)) if n is even, (34)

where S1 = {p :∑m
j=1 q j = 1, 0 ≤ q1, . . . , qm ≤ 1} and S2 = {b : 0 ≤ b1 ≤ . . . ≤

bk ≤ 1}.We shall show that the functions 
(p, ·) and 
(·, b) are concave over the convex
sets S1 and S2, respectively, so that there exists a maximum at each iteration. Thus,
in each stage there is an increase in the likelihood (14), which is bounded by (km)n ,
and the sequence of partially maximized likelihoods converges. Under the conditions
stated in the theorem, we shall also show that the objective function is strictly concave,
so that the maximum at each stage is unique, with probability tending one as n2 goes
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to infinity. Finally, since S1 × S2 is a closed set, the sequence of maxima obtained at
successive stages converges to a unique limit, with probability tending to one.

Let B be an n × m matrix with βi j in the i j th position. For fixed b, the partial
derivative of (33) with respect to p is

∂


∂p
=

n∑

i=1

Bi
Bi T p

where Bi is the i th row of B matrix. The second derivative or the Hessian is

∂


∂p∂pT
= −

n∑

i=1

Bi BT
i

(Bi T p)2
(35)

which is a non-positive definite matrix. Hence 
 is a concave function over a convex
and bounded domain, which ensures the existence of a maximum (Simon and Blume
1994). Now, we need to show that the probability of the Hessian matrix being negative
definite goes to one. It is enough to show for any vector u �= 0,

P

(
n∑

i=1

(BT
i u)2

(Bi T p)2
= 0

)
→ 0.

In other words, we need to show that for any arbitrary vector u �= 0,

P
(
BT
i u = 0 ∀i

)
= P (Bu = 0) → 0. (36)

It is clear from (15) that for an individual (say i) having exactly recalled age at
landmark event, Bi has only one non-zero element. In this situation, the equation
BT
i u = 0 implies that the corresponding element of u is zero. Further, Theorem 3

shows that, with probability tending to one, the columns of B correspond only to
singleton members of A0 associated with individuals recalling age at event exactly.
Therefore, with probability tending to one, the event Bu = 0 coincides with the event
u = 0.

For fixed p, the first derivative of (33) with respect to b is

∂


∂b
=

n∑

i=1

Aip

Bi T p

where Ai is the k × m matrix with the (l, j)th element given by
∂βi j
∂bl

.
The Hessian with respect to b is

∂


∂b∂bT
= −

n∑

i=1

(
BT
i p
)−2

AippTAT
i (37)
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which is non-positive definite matrix. Hence 
 is a concave function over a convex
domain, it ensures the existence of a maximum (Simon and Blume 1994).

In order to prove the negative definiteness of the Hessian with probability tending
to one, we need to show that for any arbitrary vector v �= 0,

P
(
vTAip = 0 ∀i

)
→ 0. (38)

From (15), it follows that for i ∈ I2,

Aip = −
⎛

⎝
m∑

j=1

q j · I (J j ⊂ Ai )

⎞

⎠(I (Ti ∈ Ai1), . . . , I (Ti ∈ Aik)
)T

, (39)

which is a vector with a non-zero element exactly at one place. The condition vTAip =
0 is equivalent to the requirement that the element of v corresponding to the non-zero
element of Aip is zero. On the other hand, as n2 → ∞,

P
(∑

i∈I2
I
(
(Si − Ti ) ∈ [xl , xl+1]

) = 0
)

=
[
P
(
(Si − Ti ) ∈ [xl , xl+1]|δiεi = 1

)]n2 → 0 ∀l.

Thus, for all l = 1, . . . , k, there is at least one i ∈ I2 such that Ti ∈ Ail , with
probability tending to one. Therefore, the condition vTAip = 0 ∀i ∈ I2 reduces,
with probability tending to one, to the requirement that all the elements of v are zero.
Therefore, for v �= 0, we have P

(
vTAip = 0, ∀i) ≤ P

(
vTAip = 0, ∀i ∈ I2

)→
0. Thus, the probability that the Hessian matrix defined in (37) is negative definite
goes to one. This completes the proof.

Proof of Theorem 6

The proof relies on an application of Theorem 3.1 of Wang (1985), in the manner
it was used by Gentleman and Geyer (1994). The said theorem makes use of five
assumptions.

The first assumption requires a separable compactification of parameter space Θ .
In the present case, the set Θ serves this purpose. The Lévy distance can be used as
metric, and the compactness follows by the Helley selection theorem. Homeomorphic
mapping of [tmin, tmax ] to [0, 1] can be used to establish separability (Billingsley 1968,
p. 239). The equivalence class E defined by (24) is regarded as a single point in Θ .
This takes care of the issue of non-identifiability as in Redner (1981).

Let, for r = 1, 2, . . . , Vr (F) be the Lévy neighborhood of F ∈ Θ with radius
1/r . For such a sequence of decreasing open neighborhoods, Wang (1985)’s second
assumption requires that, for any F0 in Θ , there is a function Fr : Θ → Vr (F0)
such that (a) 
(F) − 
(Fr (F)) is locally dominated on Θ and (b) Fr (F) is in Θ if
F ∈ Θ . We define Fr (F) = 1

r+1 F + r
r+1 F0. Since ‖Fr (F) − F0‖ = 1

r+1‖F − F0‖,

123



Nonparametric estimation of time-to-event distribution... 501

and the Lévy distance is dominated by the Kolmogorov-Smirnov distance, it is clear
that Fr (F) ∈ Vr (F0). Condition (b) is obviously satisfied. As for condition (a), note
that

sup
F∈Θ

[

(F) − 
(FF,r )

]

= sup
F∈Θ

ln

∑p
j=1 αi j

(
F(t j )−F(t j−)

)

1
r+1

[∑p
j=1 αi j

(
F(t j ) − F(t j−)

) ]+ r
r+1

[∑p
j=1 αi j

(
F0(t j )−F0(t j−)

) ]

≤ ln(r + 1),

which has finite expectation. Thus, 
(F) − 
(Fr (F)) is globally dominated on Θ .
The third assumption requires that E[
(F) − 
(Fr (F))] < 0 for F0 ∈ Θ , F ∈ Θ ,

F �= F0. Here, F0 needs to be interpreted as E , and the result follows along the lines
of the proof of Lemma 4.4 of Wang (1985).

The fourth and fifth assumptions require that 
(F) − 
(Fr (F)) is lower and upper
semicontinuous for F ∈ Θ except for a null set of points (whichmay depend on F only
in the case of upper semicontinuity). Both the conditions follow from the portmanteau
theorem (Billingsley 1968, p. 11), as argued by Gentleman and Geyer (1994). No null
set needs to be invoked.

Since all the assumptions hold, the stated result follows from Theorem 3.1 of Wang
(1985).

Proof of Theorem 7

Theorem 6 says that the Lévy distance of {F̃n} from the equivalence class E goes to
zero almost surely as n goes to infinity, that is,

inf
F∈E

dL(F̃n, F) → 0 as n → ∞ with probability 1.

It follows that P(infF∈E dL(F̃n, F) > ε) → 0.
Using the fact that P(ω : F̃n(ω) = F̂n(ω)) → 1, we conclude

P

(
inf
F∈E

dL(F̂n, F) > ε

)
→ 0.

which proves the statement.

Proof of Theorem 8

Note that the equivalence class defined in (24) is the class of all distribution functions
that have Kullback-Liebler ‘distance’ zero from the true unknown distribution. Let
H be the probability measure corresponding to the density h, (which is determined
by g, πη and F through (6)). Let H0 be the ‘true’ value of H . The Kullback-Liebler
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‘distance’ between H and H0 is defined as D(H‖H0) = μ(h log( h
h0

)). By Jensen’s
inequality it is easy to see that D(H‖H0) ≥ 0. The equality in Jensen’s inequality
holds if and only if the argument of the log function is a constant, i.e.,

D(H‖H0) = 0 iff H = H0. (40)

Under the conditions given in part (b) or (c) of Theorem 1, H completely identifies
F . Hence, H = H0 implies F = F0. It follows that the true distribution of the
time-to-event, F0, is the only member of the equivalence class E .
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