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Abstract In a cross-sectional observational study on time-to-event, the probability

distribution of that time is often estimated from data on current status. Recall data on

the time of occurrence of the landmark event can provide more information in this

regard. Even so, the subjects may not be able to recall the time precisely. This type

of incompleteness is a peculiarity of recall data, which poses a challenge to analysis.

Valid likelihood-based procedures for inference have emerged in a number of papers

published only recently. In this article, we review these papers and show how one

can estimate the time-to-event distribution parametrically or nonparametrically, and

also assess the effect of covariates, by using current status data or incompletely

recalled data. The methods are illustrated through the analysis of menarcheal data

from a recent anthropometric study of adolescent and young adult females in Kolkata,

India.

Keywords Current status data · Informative censoring · Interval censoring

Relative risk regression model · Retrospective study · Turnbull estimator

1 Introduction

Time to occurrence of an event is an object of interest in various fields. Obser-

vational studies have been carried out to study the time until onset of menarche

of females (Bergsten-Brucefors 1976; Chumlea et al. 2003; Mirzaei and Sengupta

2015), breast development of females (Cameron 2002; Aksglaede et al. 2009), dental

development of infants (Demirjian et al. 1973; Eveleth and Tanner 1990), birth of the

first child of a woman (Allison 1982), beginning of a criminal career (Hosmer and

Lemeshow 1999), end of a work career (LeClere 2005), end of a strike (Hosmer and

Lemeshow 1999), and so on. In anthropometric studies, the age of passing various
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developmental landmarks is examined by their own right, and also as useful covari-

ates for body dimensions used for obtaining growth curves (Salsberry et al. 2009;

Vizmanos et al. 2001). One may wish to estimate the probability distribution of the

time to occurrence of a particular event in order to compare two populations. Such

estimates may also be useful in setting benchmarks for individuals or setting policy

objectives. Most of the observational studies on time-to-event are cross-sectional in

nature, though there are some instances of study designs for observing a number of

individuals continuously or periodically until the occurrence of the landmark event

(Korn et al. 1997; McKay et al. 1998).

There are many parametric models for the probability distribution of the time-to-

event, viz. exponential, Weibull, lognormal, gamma, Gompertz, log-logistic, Pareto,

generalized gamma. Once a parametric model for the time-to-event has been chosen,

standard techniques for parametric inference become applicable. However, these

techniques are meant for complete data. Cross-sectional time-to-event data may be

incomplete in many ways. For example, the time would not be known in the case of

individuals who did not experience the event. If one records only the current status of

the individual in terms of the happening of the event, the time-to-event is not recorded

even for those who have experienced the event. If the interviewed individual is asked

to recall the time of occurrence of the event, there may be occasional cases of complete

failure to remember. This would result in another form of incompleteness. Yet more

complex forms of incompleteness would arise if some individuals are only able to

recall a range of time when the event had occurred.

Most of the data arising from these situations can be broadly referred to as cen-

sored data. There are modified versions of likelihood-based techniques, which work

for censored data. However, the nature of modification depends on the nature of

censoring. One has to make certain assumptions about the censoring mechanism in

order to be able to specify an appropriate likelihood. A key assumption which is

often made is that the mechanism of censoring is independent of the time-to-event.

This assumption essentially means that a particularly long or particularly short time-

to-event does not have any more or any less chance of being censored, compared to

other cases. It can be shown that this assumption can be particularly problematic for

data obtained through recall. The event of recall induces a special type of dependent

censoring that has been specifically modeled in recently published literature.

This article is intended to provide an up-to-date overview of the methods of

inference available to those who aspire to analyze time-to-event data collected from

a cross-sectional study, without going deeply into the technical details, which can

always be obtained from the original sources cited here. We focus on methods that

are based on likelihood. Consequently, many popular methods, such as those based

on probit model for the event of menarche before a specific age (Hediger and Stine

1987), are excluded from the purview of our discussion.

The remainder of this article is organized as follows. Section 2 reviews the current

status data on time-to-event and likelihood-based inference procedures available

for it. Section 3 deals with perfectly recalled time-to-event data and the relevant

procedures. Section 4 dwells on parametric and nonparametric inference in the case

where some of the time-to-event are not recalled at all. Section 5 shows how one can
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incorporate the effect of covariates on time-to-event distribution through regression

models for various types of cross-sectional data. In Sect. 6, there is a brief discussion

on partial recall and recall error. An illustrative data analysis is reported in Sect. 7. The

data analysis is based on a study of menarcheal age of adolescent and young adult

females, undertaken by the Indian Statistical Institute, Kolkata. Some concluding

remarks are given and areas for future work are identified in Sect. 8.

2 Current Status Data

Current status data, also known as status quo data (Teilmann et al. 2009), consist of

the value of a binary status variable that indicates whether or not the landmark event

has occurred till the day of observation.

Consider a set of n subjects with the landmark event occurring at times T1, . . . , Tn ,

which are samples from a common distribution F with density f and support

[tmin, tmax ]. Let these subjects be observed at times S1, . . . , Sn , respectively, cho-

sen from a finite set S. Let, for i = 1, . . . , n, δi be the indicator of Ti ≤ Si , i.e., the

event having had occurred on or before the time of interview.

Current status data arise from the observation consisting only of (Si , δi ), (i =

1, 2, . . . , n). The corresponding likelihood, conditional on the time of interview, is

n
∏

i=1

[F(Si )]
δi [F̄(Si )]

1−δi , (1)

where F̄ = 1 − F . If the distribution F is assumed to be a member of a parametric

family characterized by the parameter θ (which may be a vector of parameters), then

the parametric MLE is obtained by maximizing the above likelihood with respect to

θ. There has been considerable interest in the parametric analysis of current status

data (Shiboski and Jewell 1992; Sun and Kalbfleisch 1993). For properties of the

MLE based on the above likelihood, see Lee and Wang (2003).

It is also possible to estimate the distribution nonparametrically, that is, with-

out assuming any particular functional form of the distribution. Note that if the i th

respondent is observed to have experienced the event of interest, then it is known

that the time-to-event Ti belongs to the interval [tmin, Si ]. If the event has not been

experienced, then Ti belongs to the interval [Si , tmax ]. In either case, Ti is known to

belong to an interval. This is a special case of interval censoring, sometimes referred

to as Case I interval censoring (Sun 2006).

In general, interval censoring refers to the situation where one only knows that

the time-to-event lies in a certain window of time; i.e., Ti belongs to an observed

interval [L i , Ri ]. The case of no censoring (L i = Ri ) can be indicated by the binary

variable ηi . When the data contain instances of no censoring (L i = Ri ), censoring

from the right (Ri = tmax ), censoring from the left (L i = tmin), and censoring from
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both sides (tmin < L i < Ri < tmax ), the censoring is called mixed interval censoring

(Sun 2006, Chap. 2).

If the censoring mechanism is independent of the time Ti (an assumption that

usually holds for current status data), the general likelihood for interval-censored

data is
n

∏

i=1

[ f (Ti )]
ηi [F̄(L i ) − F̄(Ri )]

1−ηi , (2)

where f is the probability density function corresponding to the distribution F . Note

that in the case of current status data, ηi = 0 for every i , and [L i , Ri ] is constrained to

be either [tmin, Si ] or [Si , tmax ], so that the likelihood (2) reduces to (1). A nonpara-

metric maximum likelihood estimator (NPMLE) of F for general interval-censored

data would be the distribution function that maximizes the above likelihood. This

NPMLE was derived by Ayer et al. (1955). Turnbull (1976) worked on it further and

gave a computational algorithm. This algorithm consists of partitioning the range

[tmin, tmax ] into disjoint subintervals, such that every observed interval [L i , Ri ] can

be expressed as a union of these subintervals. There can only be a finite number of

such subintervals. Once this partitioning is done, the task of identifying the NPMLE

reduces to allocating optimum probabilities to these subintervals so that the total

probability is 1 and the above likelihood is maximized. See Keiding et al. (1996) for

details of this estimator, generally known as the Turnbull estimator.

The Turnbull estimator has an undesirable characteristic. When a subinterval is of

positive length (i.e., left and right end-points do not coincide), the probability allo-

cated to that interval can be distributed in any manner within the interval, without

affecting the value of the likelihood. In other words, the NPMLE is not unique. Two

different distribution functions that allocate identical probabilities to each subin-

terval (while distributing the probability within the intervals in different ways) can

happen to be NPMLEs. In the case of current status data, every single subinterval

is likely to be of positive length. Therefore, the ambiguity about the NPMLE pre-

vails everywhere, except at the boundaries of the subintervals! Practically speaking,

the NPMLE specifies a distribution only at a finite number of points and is silent

about how they should be interpolated to obtain the full description of a distribution

function.

A desirable property of an estimator is that when the sample size is increased, it

should be probabilistically very close to the quantity being estimated. This property is

called consistency. Consistency of an estimator, under appropriate conditions, needs

to be established for it to be credible. This holds for estimators of single parameters,

vector parameters, and even functions. In particular, when a distribution function

is estimated by a function computed from the data, it should converge to the true

distribution function, under appropriate conditions, as the sample size goes to infinity.

In the case of an NPMLE of a distribution function obtained from interval-censored

data, this requirement poses a conceptual problem, since the NPMLE is only the set

of values of a function at a few points and not a fully specified function. Gentleman
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and Geyer (1994) brought in the requisite formalism to establish the consistency of

the NPMLE of F from independently interval-censored data.

Various methods of inference for interval-censored data have been explained in

books such as Sun (2006), Kalbfleisch and Prentice (2002), and Lee and Wang (2003).

3 Perfectly Recalled Time Data

In some cross-sectional studies, a subject is asked to recall the time of occurrence

of the landmark event, in case it has already taken place. Such retrospective data

are usually incomplete (Roberts 1994; Padez 2003). The subject may not be able to

recall the time at all or may be able to specify only a range for the requisite time.

Even if there is no difficulty of recall (which may happen, for instance, if there is a

formal record of the time of occurrence), there would be incompleteness in the data

in respect of those individuals who did not experience the event yet. In this section,

we only consider the latter situation, where there is no problem of recall and the only

incompleteness arises from the possible nonoccurrence of the event at the time of

data collection.

Going by the notations used in the previous section, the observable quantities in

this situation are Ti when δi = 1 and Si when δi = 0. The censoring involved here is

from the right, in the sense that the time-to-event is longer than the time of observation

(censoring time). This is a special case of interval censoring, with Ri = L i = Ti when

δi = 1 and L i = Si , Ri = tmax when δi = 0. The simplified form of the likelihood

(2) is
n

∏

i=1

[ f (Ti )]
δi [F̄(Si )]

1−δi . (3)

Assuming Si is random and independent of Ti , we essentially have randomly right-

censored data, which has been dealt with extensively in the literature. Usual large

sample properties of many parametric likelihood-based techniques have been shown

to hold for randomly right-censored data, under appropriate conditions (Lawless

2003). Modifications of goodness-of-fit tests for randomly right-censored data have

also been proposed (Lawless 2003, Chap. 10). If one does not assume the functional

form of the distribution, the above likelihood can be maximized with respect to the

function F̄ to obtain the nonparametric MLE. This NPMLE happens to be the well-

known Kaplan–Meier estimator. For properties of this estimator, two-sample tests,

and other related procedures, see Kalbfleisch and Prentice (2002), Hosmer et al.

(2008), Lawless (2003), and Klein and Moeschberger (2003).

4 Recalled Time Data with Occasional Failure to Recall

Let us now consider the situation where a subject may not be able to recall the time

of the event of interest. Non-recall necessarily means that the time-to-event Ti can
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have any value smaller than the time till observation (Si ), which corresponds to left

censoring. Here, we ignore the possibility of the subject recalling an approximate

date and regard such occurrence as a non-recall event. Thus, the entire data set would

consist of only three types of cases: complete data arising from the cases of perfect

recall, left-censored data arising from the case of non-recall, and right-censored data

arising from the cases where the event did not take place yet. These cases can be

described by the binary variable δi , which indicates whether the event happened till

the time of observation (Ti ≤ Si ), and another binary variable εi , which indicates

whether the time of the event is recalled at all (assuming that it has happened).

Specifically, the three cases correspond to δiǫi = 1, δi (1 − ǫi ) = 1, and δi = 0.

Such a data set can be readily seen to be a special case of interval-censored data,

discussed in Sect. 2, where the likelihood (2) reduces to

n
∏

i=1

[

( f (Ti ))
εi (F(Si ))

1−εi
]δi

[F̄(Si )]
1−δi . (4)

However, this likelihood and the related procedures are applicable only when the

censoring mechanism is independent of the time-to-event. Incompleteness in recall

data in a cross-sectional study occurs in such a way that this assumption is violated.

This is because of the fact that memory often fades with time. Between two persons

interviewed at the same age, the one with earlier occurrence of the event of interest

has less chance of recalling the time. Mirzaei et al. (2014) and Mirzaei and Sengupta

(2016) have shown that the use of the likelihood (2) can lead to biased estimation,

both in the parametric and the nonparametric cases, though there are instances when

the NPMLE (Turnbull estimator) has been used for studying the distribution of age

at reaching a developmental landmark by using recall data (see, e.g., Aksglaede et

al. 2009).

In some existing models and methods for dependent censoring (see, e.g.,

Finkelstein et al. 2002; Scharfstein and Robins 2002), censoring is assumed to occur

through duration variables that have the same origin of measurements as that of the

duration of interest. Since this assumption does not hold here, these methods are not

applicable. Mirzaei et al. (2014) took into account the special type of incomplete-

ness arising from recall data by new modeling. They recognized that the non-recall

probability may depend on the observation time and the time-to-event, and modeled

it as a function π of the time elapsed since the occurrence of the event till the time

of observation,

P(εi = 0|Si = s, Ti = t) = π(s − t),

where s > t > 0. The three types of data mentioned above would lead to differ-

ent contributions to the likelihood. By putting these cases together, the likelihood

according to this model can be shown to be

n
∏

i=1

[

(∫ Si

0

f (u)π(Si − u)du

)1−εi

[ f (Ti )(1 − π(Si − Ti ))]
εi

]δi

[F̄(Si )]
1−δi . (5)
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When π is a constant, the likelihood (5) becomes a constant multiple of the indepen-

dent interval censoring likelihood (4). As a further special case, if π = 1, it reduces

to the current status likelihood (1). On the other hand, when π = 0, the likelihood

reduces to the perfect recall likelihood (3). Thus, the model that leads to the likelihood

(5) is more general than the models for independent censoring.

Mirzaei et al. (2014) assumed parametric forms of the functions π and F , estab-

lished consistency and asymptotic normality of the MLE under the above model,

subject to suitable regularity conditions. They also suggested a graphical method of

guessing the functional form of the non-recall probability π. Mirzaei and Sengupta

(2016) allowed the distribution function to be arbitrary and eliminated the integral

in the likelihood (5) by assuming a piecewise constant form of π:

π(x) =



















b1 if x1 < x ≤ x2,

b2 if x2 < x ≤ x3,
...

bk if xk < x < ∞,

(6)

where 0 = x1 < x2 < · · · < xk ; 0 < b1, b2, . . . , bk ≤ 1. They derived the NPMLE

of F obtained by maximizing the resulting likelihood, which can be obtained through

a self-consistency algorithm. Significantly, they showed that when the sample size

is large, the NPMLE tends to have probability concentrated only on the distinct

times of exactly recalled events. Accordingly, they proposed an approximate NPMLE

(AMLE), which is computationally much simpler and is asymptotically equivalent

to the NPMLE. The AMLE is obtained by maximizing the approximate likelihood,

written in terms of the probabilities q1, . . . , qm attached to the exactly recalled event

times t1, . . . , tm , as the product of weighted sums

n
∏

i=1





m
∑

j=1

αi j q j



 . (7)

The weights αi j are computable from the data as linear functions of b1, . . . , bk ,

which may be regarded as nuisance parameters while maximizing (7) with respect to

q1, . . . , qm . Mirzaei and Sengupta (2016) discussed how the variance of the AMLE

can be estimated. They showed that both the NPMLE and the AMLE are consistent

estimators of the underlying distribution under general conditions.

The two-sample problem for data of this type has not been addressed yet. A

solution under the restriction of proportional hazards may be obtained by considering

the Cox regression model with a single binary covariate, discussed in the next section.
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5 Regression

All the likelihoods presented in the three foregoing sections are based on the assump-

tion that the underlying time-to-event for all the individuals are independent and have

a common distribution F with density f . If each individual has a different distribu-

tion, the same likelihoods continue to hold after F and f in the factors are replaced

by their individual-specific versions: Fi and fi , respectively.

A parametric regression model provides a functional description of the distribution

of Ti given the covariate vector Z i in terms of the distribution parameters θ and

the regression parameters β. Specifically, Fi (t |Z i ) can be written as F0(t |Z i , θ,β),

where F0 is a known ‘baseline distribution.’ This substitution reduces the problem

of obtaining the MLEs of the regression parameters as another optimization problem

with β and θ (and possibly the parameters of the function π) as optimizing variables.

This problem is conceptually similar to parametric estimation. Standard procedures

(see, e.g., Lee andWang 2003) with appropriate modification of asymptotic results

are applicable.

In recent years, semiparametric regression models have gained popularity. These

models deal with covariates parametrically, while keeping a nonparametric flavor as

far as the baseline distribution is concerned. They make fewer assumptions than a

completely parametric model, but more assumptions than a model that would assign a

different time-to-event distribution to every case. This amounts to expressing Fi (t |Z i )

as F0(t |Z i ,β), where F0 is a completely unspecified distribution function. Examples

of semiparametric regression models are Cox’s relative risk model (Cox 1972), the

accelerated failure time (AFT) model (Wei 1992), the additive hazard regression

model (Klein and Moeschberger 2003), the proportional odds model (Dabrowska

1988), and so on. A summary of the methods available for randomly right-censored

data may be found in Hosmer et al. (2008). For current status data, Huang (1996)

provided consistent estimators of covariate effects under Cox’s proportional hazards

regression model. See Huang and Wellner (1997), for a review of various methods for

other regression models, with special emphasis on current status data. See Sun (2006)

for an updated summary of regression models and methods for general interval-

censored data under the assumption of independent censoring.

Mirzaei and Sengupta (2015) considered regression under Cox’s model for the

special type of dependent censoring arising from recall data with the possibility

of non-recall. When this model is combined with the likelihood (5), the resulting

likelihood becomes

n
∏

i=1

[F̄i (Si |Zi )]
1−δi

[

{ fi (Ti |Zi )(1 − π(Si − Ti ))}
εi

(∫ Si

0

fi (u|Zi )π(Si − u)du

)1−εi
]δi

,

(8)

where

F̄i (t |Z i ) = [F̄0(t)]
exp(βZi ), (9)
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fi (t |Z i ) being the derivative of Fi (t |Z i ). The above likelihood is meant to be maxi-

mized with respect to β, the (possibly vector) parameter used to describe the function

π and the unspecified function F0. Mirzaei and Sengupta (2015) simplified the opti-

mization problem by (a) removing integrals through a piecewise constant form of π

and (b) restricting probability allocations of the baseline distribution to the distinct

times of precisely recalled events. Their simulation results show that chi-square tests

of significance, obtained from the likelihood in the conventional manner after disre-

garding the nonparametric nature of the likelihood and the approximations involved,

produce reasonably reliable p values. An R program for fitting this model is available

from the authors on request.

6 Imperfect or Erroneous Recall

As mentioned in Sects. 2 and 4, it is possible that respondents may recall only a range

of time for the event of interest. Mirzaei et al. (2016) found in the case of a menarcheal

data set (partially analyzed in the next section) that, rather than remembering a range

of ages for the age at menarche, respondents often remember a range of calendar

dates for the occurrence of the event. Thus, the different types of partial recall can

be grouped into recalling the month of occurrence, the year of occurrence, and so

on, apart from the scenario of no recall at all. They proposed a multinomial logistic

model for the recall probabilities and were able to extend the parametric method

reported in Sect. 4 to this situation. Work on nonparametric estimation and extension

of the Cox regression model is in progress.

It should be noted that the recalled time-to-event can sometimes be erroneous (see

Beckett et al. 2001). Grouping of the cases of partial recall as above might reduce the

impact of recall error somewhat, but would not address the issue specifically. There

have been some attempts to incorporate this fact into the modeling through latent

variables (see, e.g., Rabe-Hesketh et al. 2001). However, adapting such modeling to

recall data would require further research.

7 Data Analysis

The data we use here are based on an anthropometric study conducted by the Indian

Statistical Institute in and around the city of Kolkata, India, from 2005 to 2011

(Dasgupta 2015, p.108). A total of 2195 randomly selected females, aged between

7 and 21 years, were surveyed. The subjects were interviewed on or around their

birthdays. The data set contains age, some physical information of each individual,

menarcheal status, age at menarche (if recalled), and some socioeconomic infor-

mation. For this data set, the landmark event is the onset of menarche. Among the

2195 cases in the data set, 775 individuals did not have menarche, 443 individuals

recalled the exact date of the onset of menarche, 276 and 209 individuals recalled the
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Table 1 Estimated parameters and median age at menarche from different methods for real data

Estimator Estimate (standard error) Median 95% Confidence

interval of median

α β η

Current status 10.74 12.17 11.76 (11.62, 11.90)

MLE (0.320) (0.005)

Interval censored 11.80 12.65 12.25 (12.20, 12.30)

MLE (0.061) (0.001)

Binary recall 10.19 12.21 3.47 11.78 (11.72, 11.84)

MLE (0.090) (0.001) (0.140)

calendar month and the calendar year of the onset, respectively, and 492 individuals

could not recall any range of dates. Thus, the data are interval-censored. A major

goal of this study was to estimate the distribution of the age at onset of menarche and

the dependence of age at menarche on socioeconomic variables. For simplicity, we

dichotomize the recalled information; i.e., we club the cases of partial and no recall

and refer to them as cases of no exact recall.

To illustrate the parametric approach, we used the Weibull model for menarcheal

age and the exponential model with scale parameter η for non-recall probability.

We compared the performance of MLEs based on the current status likelihood (1)

(described here as current status MLE), the likelihood (4) based on interval-censored

data with noninformative censoring (described here as interval-censored MLE), and

the likelihood (5) based on binary recall information when the censoring mechanism

is recognized as informative (described here as binary recall MLE). Computation of

MLEs in all the cases is done through numerical optimization of likelihood using the

quasi-Newton method (see Nocedal and Wright 2006). Table 1 gives a summary of

the findings. The interval-censored MLE of the median is somewhat different from

the other two MLEs, which is possibly because of the bias of the former. The binary

recall MLE has a narrower confidence interval for the median than the current status

MLE.

As another illustration, in Fig. 1, we compare graphically the closeness of the

parametric estimator of the time-to-event distribution with the AMLE (see Sect. 4),

for the menarcheal data set when a piecewise constant model of π with k = 8 is used

for the non-recall probability. The jump points of the piecewise constant function

are assumed to be evenly distributed over the range 0–13 years (maximum possible

separation between menarcheal age and age at observation in the sample). The two

estimators are somewhat close to one another.

The age at menarche can potentially be affected by diet and physical activities.

These factors can be related to more easily measured socioeconomic variables such

as parents’ education and monthly family expenditure (Khan et al. 1996; Padez 2003;

Aryeetey et al. 2011). We considered the monthly family expenditure in Indian rupees

(indexed with respect to 2008 as base year) and a couple of binary variables indicating
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Fig. 1 Comparison of MLE and AMLE of menarcheal age distribution

Table 2 Estimated regression coefficients and their p values

Covariates Estimated value p value

Whether father passed high

school

0.091 0.0036

Whether mother passed high

school

0.249 0.0061

Monthly family expenditure 0.0002 0.0047

whether the father or the mother of the respondent had passed high school. The present

analysis concerns a subset of the original data, consisting of respondents who came

from a nuclear family and were the only child of their respective parents. Among the

total of 673 respondents, 241 individuals did not have menarche, 147 individuals had

menarche and recalled the date of its onset, and the remaining 285 individuals had

menarche but could not recall the date. The median of monthly family expenditure

was Rupees 7808. The fathers of 492 respondents and the mothers of 420 respondents

had passed high school.

The estimated regression coefficients and the corresponding p values are reported

in Table 2. All the coefficients are found to be significant at the 1% level. The p value

of the combined hypothesis of insignificance of all the three regression coefficients

is 0.00093.

We now consider four hypothetical subjects with covariate profiles Z described

below.

Z = (0, 0, 7808): Monthly family income is Rupees 7808 (median income of

the group), neither parent passed high school.
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Fig. 2 Estimated survival function in different cases

Z = (1, 0, 7808): Monthly family income is Rupees 7808, only the father passed

high school.

Z = (1, 1, 7808): Monthly family income is Rupees 7808, both the parents

passed high school.

Z = (1, 1, 10000): Monthly family income is Rupees 10000, both the parents

passed high school.

A comparative plot of the estimated survival functions of these four subjects is given

in Fig. 2. Father’s status of having passed high school is found to be associated with

earlier maturation. The mothers having the same qualification are seen to have an

even greater impact in the form of earlier maturation. A 28% higher monthly family

expenditure is also found to have a considerable impact on the survival function of

the age at menarche.

8 Concluding Remarks

Cross-sectional time-to-event data obtained from recall have been found to be sur-

prisingly complex in terms of the nature of incompleteness. Many interesting ques-

tions have been answered in recent years through careful modeling, and many more

remain to be answered. We have indicated in Sect. 5 how the Cox regression model

can be fitted in the case of recall data with the possibility of non-recall. Fitting of

other regression models and adapting such models to partial recall data remain to be

explored. Further challenges include handling of recall error and of random effects

(frailty).
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